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Goal for Today

Make inferential claims from a random sample to a population.



Introduction

We are moving pretty quickly now into applied statistical inference.

e We discussed random sampling as the foundation of inference.
e This leads to an important trade-off between bias and efficiency.

We can actually calculate this random sampling error.

Variation component
RS.E. = - (M
Sample size component

This random sampling error is the standard error of a sample mean.

Standard error of sample mean =

Sl




What's Next?

How likely is the sample statistic given a population parameter?

1. What if we assume (or even know) the population parameter?
2. How likely is it we observed that sample statistic?

We can answer this question by reference to two concepts.

1. Central limit theorem
2. Normal distribution




Central Limit Theorem

The central limit theorem says:

e with an infinite number samples of size n...
e from a population of N units...
e the sample means will be normally distributed.

Corollary findings:

e The mean of sample means would equal .
e Random sampling error would equal the standard error of the sample mean (ﬁ)




Normal Distribution

A normal distribution is a symmetrical, continuous function.

e [ts peak is the arithmetic mean (u).
e |ts width equals the variance (02)

You should remember some other features our lecture on this distribution.



An Applied Example from a Thermometer Rating

Let's use a real-world illustration from the 2020 ANES exploratory testing survey.
e Survey period: April 10-18, 2020 (online).
e Released July 27, 2020

The question is a basic thermometer rating of Donald Trump.

e Scale: 0 (“coldest”) to 100 (“warmest”)



Thermometer Ratings for Donald Trump (ANES ETS, 2020)

Thermometer ratings for divisive political figures in the U.S. tend to be ugly as hell with estimates of central tendency that don't faithfully capture the data.
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Thermometer Rating

This is what you'll get in these questions, by the way.

e 0-100 thermometer ratings are noisy with natural “heaping” patterns.
e Partisanship only compounds the problem, as you can probably gather.

Notice the mean and median aren't too far apart, but the data don't look “normal” for
obvious reasons.

e Standard deviation is also huge.

e Conventional interpretation: there are more people who loathe Trump than those
who really love him.

Next slide: what it looks like for Barack Obama.




Number of Observations in Response

Thermometer Ratings for Barack Obama (ANES ETS, 2020)

Again: thermometer ratings for divisive political figures in the U.S. tend to be ugly as hell with estimates of central tendency that don't faithfully capture the data.
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What We'll Do

Let's create a hypothetical “population” with the set parameters from the Trump ratings.

e Data will be bound between 0 and 100 with a mean of 42.42 and standard deviation
of 38.84.
e N =250,000 (i.e. scaled down from U.S. adult population of ~250 million).

We want to approximate the “population” mean thermometer rating via central limit
theorem.

e We'll grab a million samples of ten respondents and store the sample means.

Let's plot the results.




R Code

# rbnorm from stevemisc
Population <- rbnorm(250000, mean =42.42, sd = 38.84,
lowerbound = O,
upperbound = 100,
round = TRUE,
seed = 8675309) # Jenny, I got your number...

Note: it's hard to perfectly mimic these kind of thermometer ratings from a simple
distribution, but this will do.

e Mean: 42.459772
e Standard deviation: 38.8881803




R Code

set.seed(8675309) # Jenny, I got your number...
# Note dqrng offers much faster sampling at scale
Popsamples <- tibble(
samplemean=sapply(1:1000000,
function(i){ x <- mean(
dgsample (Population, 10,
replace = FALSE))
M)



Density

The Distribution of 1,000,000 Sample Means, Each of

e 10

Notice the distribution is normal and the mean of sample means converges on the known population mean (vertical line).
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How Did We Dao?

See for yourself:
mean (Popsamples$samplemean)
## [1] 42.47174

mean (Population)

## [1] 42.45977

Not bad...



Implications of Central Limit Theorem

Remember the previous implications of random sampling error?

e i.e.agood-sized sample reduces random sampling error in even high-variation data?



Sample Means

Ten Sample Means of Varying Sample Sizes from a Population

The diminishing returns of increasing sample size emerge around 1,000 observations, even as the spread in these simulated data is quite large.
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Implications of Central Limit Theorem

Likewise, infinite samples of any size (even absurdly small samples of high-variation data)
reduce the gap between estimate and “true” population parameter.



Standardization

A raw normal distribution | presented is somewhat uninformative.

e Standardization will make it useful.

Deviation from the mean
z= - 3)
Standard unit

The standard unit will vary, contingent on what you want.

e |f you're working with just one random sample, it's the standard deviation.
e If you're comparing sample means across multiple random samples, it's the standard
error.




Standardization

Larger z values indicate greater difference from the mean.

e When z =0, there is no deviation from the mean (obviously).

Standardization allows for a better summary of a normal distribution.



The Area Underneath a Normal Distribution

Density

The tails extend to infinity and are asymptote to zero, but the full domain sums to 1. 95% of all possible values are within about 1.96 standard units from the mean.
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Density

The Distribution of 1,000,000 Sample Means, Each of Size 10

Notice the distribution is normal and the mean of sample means converges on the known population mean (vertical line).
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Inference Using the Normal Distribution

What's the next step? Assume this scenario for illustration.

e We as researchers have a sample of 100 people from this population.

set.seed(8675309)
oursample <- sample(Population, 100, replace = FALSE)
mean (oursample)

## [1] 43.64

e We as researchers don't know p (though it's 42.46).
o We assume we know o (38.89), a bit unrealistic, but alas...
e We have an n of 100 and T of 43.64.

We want to know the location of the population mean.




Inference Using the Normal Distribution

Our best guess of the population parameter from the sample is the sample statistic.

e We have to account for the noise introduced by random sampling.
e However, we'll never truly “know” the population parameter.

A 95-percent confidence interval can be informative.

e |t's the interval in which 95% of all possible sample estimates will fall by chance.
e We operationalize this as T & (1.96)*(standard error).




Inference Using the Normal Distribution

How we apply this for our problem.

e We have our x-bar.
e We have our n and assume a known o.

e Standard error = 3.889 (\/Lﬁ = ?\’;31—%3 =3.88

)



Inference Using the Normal Distribution

We can get our upper/lower bounds of a 95-percent confidence interval.

Lower bound = T — (1.96) * (s.e.) 4

Upper bound = T + (1.96) * (s.e.) (5)




R Code

#computation of the standard error of the mean
sem<-sd(Population)/sqrt(length(oursample))

#957, confidence intervals of the mean
c(mean(oursample)-1.96*sem, mean(oursample)+1.96*sem)

## [1] 36.01792 51.26208



Inference Using the Normal Distribution

We discuss this interval as follows.

e |f we took 100 samples of n =100, 95 of those random samples on average would
have sample means between 36.02 and 51.26.

We're not saying, for the moment, the true population mean is between those two values.
We don't necessarily know that.

e However, even this process gives us some nice properties.




An Illustration of Inference

Assume we have a Pickens County resident who is suspicious of our x-bar.

e (S)he claims it has to be much higher. Say: 56.61.
e Rationale: this is the percentage of the vote Trump got in the Pike precinct of Pickens

County.
e In other words, (s)he is basically inferring by anecdote or making hasty generalizations

from his/her surroundings.

So what can we do about this claim?




An Illustration of Inference

This is a probabilistic question!

e i.e. What was the probability of T = 43.64 if i = 56.61?

We can answer this by reference to z values.




R Code

(mean (oursample)-56.61)/sem

## [1] -3.335204



Find the z Value

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

z 00 01 02 03 04 .05 .06 07 .08 09
-3.9 00005 00005 .00004 00004 00004 .00004 00004 .00004 00003 .00003
-3.8 00007 00007 00007 00006 00006 .00006 00006 00005 00005 00005
-3.7 | 00011 00010  .00010 00010  .00009  .00009 00008  .00008  .00008 00008
-3.6 | 00016  .00015 00015 .00014 00014 00013 00013 .00012  .00012  .00011
-3.5 | .00023 00022 .00022 00021 .00020 .00019 00019 .00018 00017 .00017
-3.4 | 00034  .00032  .00031  .00030  .00029  .00028  .00027  .00026  .00025  .00024
-3.3 00048 00047 00045 00043 00042 00040 00039 00038 00036 00035
-3.2 | 00069 00066 00064 00062 00060 00058 00056 00054 .00052 00050
-3.1 00097 00094 00090 00087 00084 00082 00079 00076 00074 00071
-3.0 00135 00131 00126 00122 00118 00114 00111 .00107 00104 00100
-2.9 | 00187 00181 00175 00169 00164 00159 00154 00149 00144 00139
-2.8 | 00256  .00248 00240  .00233 00226 00219 00212 00205  .00199  .00193
-2.7 | 00347 00336 .00326  .00317 00307 00298 00289 00280  .00272 00264
-2.6 00466 00453 00440 00427 00415 00402 00391 00379 00368 .00357
-2.5 00621 00604 00587 00570 00554 .00539 00523 00508 00494 00480

-2.4 | 00820  .00798 00776 00755 00734 00714 00695 00676  .00657 00639
-2.3 | 01072 01044 01017 00990  .00964 00939 00914 00889  .00866  .00842




..orinR

1-pnorm(abs ((mean (oursample)-56.61)/sem))

## [1] 0.0004261848



An Illustration of Inference

What is the probability that a random sample would produce a z value of -3.3352?

e Answer: 0.00043

In other words: if ;1 were 56.61, we'd observe that T only about 4 times in 10,000 trials, on
average.

e This is highly improbable.



An Illustration of Inference

What do we conclude?

e We suggest this hypothetical Pickens County resident is likely wrong in his/her
assertion.
e We offer that our sample mean is closer to what p really is.

Since we've been playing god this whole time, we know that'’s true.



What About the Known Population Mean?

How likely was our T of 43.64 given the 1 of 42.46? Same process.

(mean (oursample) -mean (Population))/sem

## [1] 0.3034927

1-pnorm(abs ((mean (oursample) -mean(Population))/sem))

## [1] 0.3807572
The probability of our sample mean, given the population mean (that we know), is 0.38.

e This is a likely outcome.
e We cannot rule out the population mean from our random sample like we could with

the hypothetical mean of 56.61.




Some Derivations

We assumed we knew o, if not 1. What if we don't know either?

e Use the sample standard deviation (s) instead.

e Do the same process with a Student’s t-distribution.

e This is almost identical to a normal distribution, but with fatter tails for fewer degrees
of freedom.

e Degrees of freedom = n - k (i.e. number of observations - number of parameters [here: 1])

Uncertainty increases with fewer degrees of freedom.




Student’s t-distribution

Table of Probabilities for Student’s t-Distribution

df 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995
1 0.325 0727 1376 3078 6314 12.706 31821 63657
2 0.289 0617 1.061 1.886 2920 4303 6.965 9925
3 0277 0584 0978 38 3! 182 541 841
4 0271 0569 0941 33 1 776 747 604
5 0.267 0.559 0.920 476 .0 571 .365 .032
6 0.265 0553 0.906 0 9 447 143 707
7 0.263 0549 0.836 5 8 365 998 | 3499
8 0.262 0546 0.889 7 60 06 896 355
9 0.261 0543 0.883 383 33 262 2821 250
10 0.260 0542 0879 372 12 228 2764 169
i 0.260 0540 0.876 363 96 201 2718 106
12 0259 0539 0873 1.356 1782 2179 2681 3055
13 0259 0538 0870 350 771 0 65 12
14 0.25 0537 0.868 345 761 5 62 77
15 0.25 0536 0.866 341 753 1 60: 47
16 0 0535 0.865 337 746 0 58 21
17 0 05 0.86! 333 7: 0 567 | 2898
18 0.257 05 0.86 0 T 1 55 87
19 0.257 0 0.86 28 72 93 2 861 |
20 0.257 0 0.86 25 72 086 2 84
21 0.257 0 0.859 23 72 080 2 83
22 0.256 0 0.858 21 7 074 2 81
23 0256 0532 0858 1319 1714 2069 2500 2807
24 0.256 0 0857 71 064 9. 797
25 0256 0 0.856 70 060 8! 787
26 0.256 0. 0.856 70! .056 .47 77
27 0.256 0. 0.855 70: 052 7. 17
28 0.256 0 0.855 70 048 6 76
29 0.256 0530 0.85: 31 69 045 62 751
30 0.256 0530 0.85: 310 697 042 2457 750
40 0.255 0529 0.85 303 684 021 2423 704
60 0.254 0527 0.84 296 671 000 2390 | 2660
120 0254 0526 0845 1289 1658 1980 2358 2617

df (degrees of freedom) = number of samples - 1
1- alpha (for one tail) or 1 - alpha/2 (for two tails)

©Copyright Lean Sigma Corporation 2013




Some Derivations

What about sample proportions? Let p = proportion of cases in one category.

p*(1—p)
\/ﬁ

From there, do the same process you've done previously with z values.

Standard error of sample proportion =

e /mportant: inference is unreliable when p is very small (p < .05).




Conclusion: The Process of Inference

Notice the process of inference.

1. Assume the hypothetical mean to be correct.
2. Test the claim about the hypothetical mean based on a random sample.
3. Infer about the claim of the population mean using probabilistic inference.

We will never know i, but we know more about p by randomly sampling the population
and determining what p is likely not.
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