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Goal for Today

Introduce students to basic making of comparisons between an independent variable
and dependent variable.
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Theories and Hypotheses

We previously discussed the importance of theory-writing.

• Theories are conceptual, representing your ideas and arguments.

• It’s the hardest part of political science, but the most important.

Some general things to consider:

• “Keep it Kosher”
• Speak conceptually. Test operationally.
• Don’t fit theory to data.

We also discussed proper construction of hypotheses (i.e. testable statements).
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Making Comparisons

This lecture will instruct on how to make comparisons among your independent
variable and dependent variable.

• Consider this a kind of “first cut” of inferential statistics.
• A lot of peer-reviewed scholarship begins with the following tools.

We will begin to see if there is a preliminary association between our independent
variable and dependent variable.
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Cross-tabulation

A cross-tabulation has three rules in its presentation.

1. Independent variable is the column. Dependent variable is the row.
2. Always calculate percentages for the independent variable.
3. Interpret a cross-tab by comparing columns across the same value of the

dependent variable.
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Gun Control Opinions, by Partisanship

We’ll start with the gun control question from the book.

• DV: “Would you favor or oppose a law which would require a person to obtain
a police permit before he or she could buy a gun?”

• IV: Partisanship (7-point scale, condensed to Ds, Is, and Rs)

Data come from 2018 wave of GSS data.
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R Code

# require(tidyverse)
# require(stevemisc)
# require(qs)
# GSS <- qread("/home/steve/Dropbox/data/gss/GSS_spss-2018/gss7218.qs")

GSS %>% filter(year == 2018) %>% select(partyid, gunlaw) %>%
mutate(pidcat = case_when(

between(partyid, 0, 2) ~ "Democrat/Lean Democrat",
partyid == 3 ~ "Independent",
between(partyid, 4,6) ~ "Republican/Lean Republican"

),
gunlaw = ifelse(gunlaw == 2, 0, 1)) -> gunlaw18

proptable <- with(gunlaw18, prop.table(table(gunlaw,pidcat), 2))
proptable <- rbind(proptable, c(1, 1, 1))
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Table 1: A Crosstab on Support for Gun Control, by Partisanship (GSS, 2018)

Democrat/Lean Democrat Independent Republican/Lean Republican

Oppose 17.91% 29.5% 40.78%
Favor 82.09% 70.5% 59.22%
TOTAL 100% 100% 100%
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Intolerance Toward LGBTQIA+, by Age

Next example will explore social intolerance toward gay people as a function of
age/generation.

• DV: “On this list are various groups of people. Could you please mention any
that you would not like to have as neighbors?: (Homosexuals)”

• Group was either mentioned or not mentioned.

• IV: Generation, as defined by Pew cutoffs

Data come from 7th wave (2017) of WVS data (United States).
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R Code

# USA7 <- haven::read_sav("/home/steve/Dropbox/data/wvs/F00010330-WVS_Wave_7__USA_Spss_v20200720.sav")

USA7 %>% rename_all(tolower) %>%
mutate(age = q262,

birthyr = q261,
bornhere = q263,
homelanguage = q272,
raceethnic = q290,
neighb_lgbt = ifelse(q22 == 1, 1, 0)) %>%

select(age:ncol(.)) %>%
mutate(agecat = carr(age, "18:29=1; 30:49=2; 50:100=3")) %>%
filter(bornhere == 1 & raceethnic == 840001 & homelanguage == 1240) %>%
haven::zap_labels() %>%
mutate(generation = case_when(

birthyr <= 1945 ~ "Greatest/Silent",
between(birthyr, 1946, 1964) ~ "Boomers",
between(birthyr, 1965, 1980) ~ "Gen X",
between(birthyr, 1981, 1996) ~ "Millennials",
birthyr >= 1997 ~ "Gen Z"

)) %>%
arrange(birthyr) %>%
mutate(generation = forcats::fct_inorder(generation)) -> neighb17

proptable <- with(neighb17, prop.table(table(neighb_lgbt,generation), 2))
proptable <- rbind(proptable, c(1))
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Table 2: Intolerance Toward LGBTQIA+ People, by Generation (WVS, 2017)

Greatest/Silent Boomers Gen X Millennials Gen Z

Not Mentioned 75.24% 84.73% 90.23% 92.2% 95.74%
Mentioned 24.76% 15.27% 9.77% 7.8% 4.26%
TOTAL 100% 100% 100% 100% 100%
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Mean Comparisons

When our dependent variable is interval, we can use amean comparison table.

• It shows the mean of a dependent variable for different values of the
independent variable.
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Democratic Governance, by Ideology

Next example will explore attitudes about democracy in U.S. as a function of
partisan identification

• DV: “And how democratically is this country being governed today? Again
using a scale from 1 to 10, where 1 means that it is “not at all democratic” and
10 means that it is “completely democratic,” what position would you choose?”

• IV: whether respondent is a Democrat, Republican, or something else.

Data again come from 7th wave (2017) of WVS data (United States).
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R Code

USA7 %>% rename_all(tolower) %>%
haven::zap_labels() %>%
mutate(howdem = q251) %>%
mutate(partycat = dplyr::case_when(

q223 == "5" ~ "Independent/Other",
q223 == "840001" ~ "Republican",
q223 == "840002" ~ "Democrat",
q223 == "840004" ~ "Independent/Other",
q223 == "840006" ~ "Independent/Other")) %>%

select(howdem:ncol(.)) %>%
arrange(partycat) %>%
mutate(partycat = fct_inorder(partycat)) %>%
filter(!is.na(partycat)) -> howdem17

howdem17 %>%
group_by(partycat) %>%
summarize(mean = mean(howdem, na.rm=T),

n = n()) -> mct

howdem17 %>%
summarize(mean = mean(howdem, na.rm=T),

n = n()) %>%
mutate(partycat = "TOTAL") %>%
bind_rows(mct, .) -> mct
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Table 3: How Democratically is the U.S. Governed, by Party ID (WVS, 2017)

Mean Number of Observations

Democrat 5.70 1126
Independent/Other 5.61 568
Republican 6.85 819
TOTAL 6.05 2513
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Bar Charts and Line Charts

Graphically displaying data will help us make comparisons.

• Both communicate percentages or means of a dependent variable, for each
value of an independent variable.

• Differ in representation (bars or markers connected by lines).

In each case, the independent variable is the x-axis. Dependent variable is the
y-axis.
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Types of Relationships

There are four types of relationships

1. Positive
2. Negative
3. Curvilinear
4. Zero
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Types of Relationships

Note: curvilinear may also be a “normal-U”

Figure 1: Types of Relationships
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R Code

set.seed(8675309)

tibble(b0 = 60,
b1 = 15,
n = 100,
hours = rpois(n, 3),
score = b0 + b1*(hours^(1/2)) + rnorm(n, 0, 1)) -> examscores
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Notice a curvilinear relationship of a kind in the data, for which a straight line is not a good fit.

The Relationship Between Hours Studied and Exam Score (Linear Fit)

Data: Hypothetical, inspired by Pollock (2012).
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There are multiple relationships that cannot be meaningfully summarized by one straight line of best fit.

The Relationship Between Hours Studied and Exam Score (Smooth Fit)

Data: Hypothetical, inspired by Pollock (2012).
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Another Example

Your book has a peculiar example of social disconnectedness and age.

• DV: sum of ordinal measures of time spent with relatives, neighbors, and
friends.

• Ranges from 3 to 21.
• Higher values = more “disconnectedness”
• Basically: a 21 means respondent never spends any time whatsoever with

relatives, neighbors or friends.

• IV: Age in years.

Data come from 2018 wave of GSS.
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R Code

GSS %>%
filter(year == 2018) %>%
select(year, age, socrel, socommun, socfrend) %>%
mutate(discon = socrel + socommun + socfrend) %>%
ggplot(.,aes(age, discon)) + geom_smooth(method = "loess")
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Younger people are less likely to be socially disconnected. Plateaus emerge for the peak working age and declines for the elderly.

The Relationship Between Age and Social Disconnectedness

Data: General Social Survey, 2018
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Another Example

Voter turnout by partisanship

• DV: whether respondent voted in 2016 presidential election
• IV: partisanship on the familiar seven-point scale

Data come from 2018 wave of GSS.
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R Code

GSS %>% select(year, vote16, partyid) %>%
filter(year == 2018 & partyid != 7) %>%
mutate(partycat = case_when(

partyid == 0 ~ "Strong D",
partyid == 1 ~ "Not Strong D",
partyid == 2 ~ "Ind., Lean D",
partyid == 3 ~ "Ind.",
partyid == 4 ~ "Ind., Lean R",
partyid == 5 ~ "Not Strong R",
partyid == 6 ~ "Strong R"

),
vote16 = ifelse(vote16 == 2, 0, 1)) %>%
haven::zap_labels() %>%
arrange(partyid) %>%
mutate(partycat = fct_inorder(partycat)) %>%
group_by(partycat) %>%
summarize(mean = mean(vote16, na.rm=T))
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Stronger partisan attachments have long coincided with an increased likelihood of voting, even as the distribution looks like a V.

The Relationship Between Party Identification and Voting in the 2016 Presidential Election

Data: General Social Survey, 2018.
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Figure 2: Age and Life Satisfaction
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R Code

GSS %>%
select(year, union, rincom06) %>%
filter(between(year, 2006, 2014)) %>%
mutate(union = carr(union, "1=1;2:3=NA; 4=0")) %>%
group_by(rincom06) %>%
summarize(mean = mean(union, na.rm=T))
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Some relationships you'll encounter can't be neatly summarized by one or two lines at all.

The Relationship Between Income and Union Membership, 2006-2014

Data: General Social Survey, 2006-2014.
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Conclusion

We have several tools to make a preliminary association between dependent
variable and independent variable.

• e.g. cross-tabs, mean comparison table, bar chart, line chart.

Use them!

• Our inferential statistical tools tend to assume linearity.
• Look carefully if there is a non-linear trend between your variables.
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