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Goal for Today

Make the most of regression by making coefficients directly interpretable.
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Introduction

You all should be familiar with regression by now.
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Introduction

Regression coefficients communicate:

• Estimated change in y for one-unit change in x.

• This is in linear regression.

• Estimated change in logged odds of y for one-unit change in x.

• This is the interpretation for logistic regression.

These communicate some quantities of interest.

• After all, you want to know the effect of x on y!
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Introduction

However, it’s easy (and tempting) to provide misleading quantities of interest.

• Our variables are seldom (if ever) on the same scale.

• e.g. age can be anywhere from 18 to 100+, but years of education are typically bound
between 0 and 25 (or so).

• Worse yet, zero may not occur in any variable.

• We would have an uninterpretable y-intercept.
• From my experience, this can lead to false convergence of the model itself.

Your goal: regression results should be as easily interpretable as possible.

• Today will be about how to do that.
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R Code/Packages for Today

library(tidyverse) # for most things
library(stevemisc) # for formatting and r2sd_at()
library(stevedata) # for ?TV16
library(modelsummary) # for tables
library(kableExtra) # for prettying up tables

TV16 %>%
filter(state == "Pennsylvania" & racef == "White") -> Penn
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Gelman’s Parlor Tricks

Andrew Gelman (2006 [with Hill], 2008) has two parlor tricks for getting the most out of
regression.

1. The “divide by 4” rule for logistic regression coefficients.
2. Scaling by two standard deviations instead of one.
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The “Divide by 4” Rule

OLS coefficients are intuitive.

• One unit increase in x increases estimated value of y.

Logistic regression coefficients are not intuitive (yet).

• One unit increase in x increases estimated natural logged odds of y.
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The “Divide by 4” Rule

Gelman and Hill (2006, 82) argue you can extract more information from your coefficient if
you know about the logistic curve.

• The logistic curve is a familiar “S-curve” that transforms continuous variables to range
from 0 to 1.

It’ll look something like this.

tibble(x = seq(-6, 6)) %>%
ggplot(.,aes(x)) +
stat_function(fun = function(x) exp(x)/(1+exp(x)))
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Notice the bounds between 0 and 1 on the y-axis for an unbounded x-axis. Also notice the curve is steepest in the middle.

The Logistic Curve
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The “Divide by 4” Rule

See how the curve is steepest in the middle? Remember derivatives from calc?

• It means that’s the point where the slope is maximized.

That means it attains the value where

βe0/(1 + e0)2 = β/(1 + 1)2 = β/4

Dividing a logistic regression coefficient by 4 gives you a reasonable upper bound of the
predictive difference in y for a unit difference in x.
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An Example

Let’s assume we want to explain the white Trump vote in PA in 2016 as a function of
education.

• y: respondent voted for Trump (Y/N)
• x: respondent has a four-year college diploma (Y/N)

M1 <- glm(votetrump ~ collegeed, data=Penn,
family=binomial(link="logit"))

tidyM1 <- broom::tidy(M1)
interceptM1 <- tidyM1[1, 2] %>% pull()
coefM1 <- tidyM1[2, 2] %>% pull()
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Table 1: Predicting the White Trump Vote in 2016 (CCES, 2016)

Did White PA Respondent Vote for Trump?

College Educated -0.818***
(0.093)

Intercept 0.370***
(0.055)

Num.Obs. 2124

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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An Example

Interpretation here is straightforward, but not too intuitive.

• The natural logged odds of voting for Trump for those without college education is
0.37.

• College education decreases those natural logged odds by -0.818.

Divide that coefficient by 4 and you get -0.205.

• That’s an upper bound of the estimated effect in the probability of a white vote for
Trump in PA for having a college diploma.
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“Divide by 4” vs. DIY

It’s actually a really good heuristic!

# Gelman's divide by 4
coefM1/4

## [1] -0.20453

# Manually estimating the difference from the regression
plogis((interceptM1 + coefM1)) - plogis(interceptM1)

## [1] -0.2016522

Where p(y = 1) isn’t too small or large, this will do quite well when you look at your logistic
regression output.
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Standardize (by Two Standard Deviations)

Multiple regression models will have some other difficulties.

• Predictors will include variables on different scales (e.g. age in years, or male-female
gender).

• Intercepts will come in tow, but may not make sense.

Variables will almost never share the same scale.

• Thus, you can’t compare coefficients to each other, only to a null hypothesis of zero
effect.
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Standardize (by Two Standard Deviations)

Gelman (2008) offers a technique for interpreting regression results: scale the non-binary
input data by two standard deviations.

• This makes continuous inputs (roughly) on same scale as binary inputs.
• It allows a preliminary evaluation of relative effect of predictors otherwise on different

scales.
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Why Two Instead of One?

Scaling by one standard deviation has important benefits.

• Scale variable has mean of 0 and standard deviation of 1.
• Communicates magnitude change across 34% of the data.
• Creates meaningful y-intercept (that approximates a mean/typical case).
• However, it won’t help us make preliminary comparisons with dummy variables.

Scaling by two standard deviations has more benefits.

• Scale variable has mean of 0 and standard deviation of .5.
• Creates magnitude change across 47.7% of the data.
• Puts continuous inputs on roughly same scale as binary inputs.
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How Does This Work?

Consider a dummy IV with 50/50 split between 0s and 1s.

• p(dummy = 1) = .5
• Then, standard deviation equals .5 (

√
.5 ∗ .5 =

√
.25 = .5)

• We can directly compare this dummy variable with our new standardized input
variable!

This works well in most cases, except when p(dummy = 1) is really small.

• e.g. p(dummy = 1) = .25, then
√

.25 ∗ .75 = .43
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An Extended Example

Let’s go back to our white Pennsylvanian data.

• DV : did respondent vote for Trump? (Y/N)
• IVs: age [18:88], gender (female), college education, household income [1:12], L-C

ideology [1:5], D-R partisanship [1:7], respondent is born-again Christian.

M2 <- glm(votetrump ~ age + female + collegeed + famincr + ideo +
pid7na + bornagain, data=Penn,

family=binomial(link="logit"))

tidyM2 <- broom::tidy(M2)
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Table 2: Predicting the White Trump Vote in 2016 (CCES, 2016)

Did White PA Respondent Vote for Trump?

Age 0.010*
(0.005)

Female -0.170
(0.148)

College Educated -0.930***
(0.169)

Household Income -0.025
(0.026)

Ideology (L-C) 0.931***
(0.098)

Partisanship (D-R) 0.706***
(0.041)

Born Again Christian 0.311+
(0.181)

Intercept -5.602***
(0.448)

Num.Obs. 1821

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Interpreting These Results

• Estimated natural logged odds of a Trump vote when all those things are 0 is about
-5.602, but that person doesn’t exist.

• Largest (absolute) effects are college education (-0.93), ideology (0.931), and
partisanship (0.706).

• We don’t appear to discern any effects of income or gender.
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A Question

What is the largest effect on the white Trump vote in PA?

• Few/none of these variables share a common scale, so coefficient comparisons won’t
help.

• You can discern precision and discernibility from zero.
• You cannot say one is necessarily bigger than the other.

Why so?

• College education is binary, which (all else equal) drives up coefficient (and standard
error)

• Age (for example) has 71 different values, which drives down coefficient (and
standard error)

Use your head: we’re talking about a partisan vote here (for president).

• Partisanship should be way more important than education, but it has more
categories than college education.
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Scaling Everything That’s Not Binary

Penn %>%
r2sd_at(c("age", "famincr","pid7na","ideo")) -> Penn

M3 <- glm(votetrump ~ z_age + female + collegeed + z_famincr +
z_ideo + z_pid7na + bornagain, data=Penn,

family=binomial(link="logit"))

tidyM3 <- broom::tidy(M3)
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Table 3: Predicting the White Trump Vote in 2016 (CCES, 2016)

Unstandardized Coefficients Standardized Coefficients

Age 0.010* 0.323*
(0.005) (0.160)

Female -0.170 -0.170
(0.148) (0.148)

College Educated -0.930*** -0.930***
(0.169) (0.169)

Household Income -0.025 -0.149
(0.026) (0.157)

Ideology (L-C) 0.931*** 1.987***
(0.098) (0.209)

Partisanship (D-R) 0.706*** 3.087***
(0.041) (0.179)

Born Again Christian 0.311+ 0.311+
(0.181) (0.181)

Intercept -5.602*** 0.392**
(0.448) (0.132)

Num.Obs. 1821 1821

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Interpretation

Notice what didn’t change.

• Scaling the other variables doesn’t change the binary IVs.
• Notice the z-value doesn’t change either even as coefficient and standard errors

change.

However, this regression table is much more readable.

• y-intercept is much more meaningful. It’s natural logged odds of voting for Trump a
non-born again, non-college educated white man of average/values/income.

• It suggests (which, use your head) that partisanship and ideology have the largest
effects.
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Conclusion

We’re building toward an important point: regression is akin to storytelling.

• Tell your story well and get the most usable information out of what you’re doing.

Some preliminary parlor tricks via Gelman:

• “Divide by 4”: takes unintuitive logistic regression coefficients and returns upper
bound predictive difference.

• Scaling by two SDs: provides preliminary comparison of coefficients (including binary
inputs) and makes y-intercepts meaningful.
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