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Goal for Today

Discuss probability distributions.



Introduction

Last lecture discussed probability and counting.

e While abstract, these are important foundation concepts for what we're doing
in applied statistics.

Today, we're going to talk about probability distributions.

e Our most prominent tool for statistical inference makes assumptions about
parameters given a known (i.e. normal) distribution.




Refresher

Recall the choose notation (aka combination):
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The exclamation marks indicate a factorial.
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Binomial Theorem

The most common use of a choose notation is the binomial theorem.

e Given any real numbers X and Y and a nonnegative integer n,

(X+Y)" =" (:) alynh @

k=0

A special case occurswhen X =1and Y = 1.
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Binomial Theorem

This is another theorem with an interesting history.

e Euclid knew of it in a simple form.
e The Chinese may have discovered it first (Chu Shi-Kié, 1303)
e General form presented here owes to Pascal in 1654.




Binomial Theorem

The binomial expansion increases in polynomial terms at an interesting rate.
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Notice the symmetry?




Pascal’s Triangle

The coefficients form Pascal’s triangle, which summarizes the coefficients in a
binomial expansion.

n =20 1

n=1 1 1

n=2 1 2 1
n=3 1 3 3 1
n =4: 1 4 6 4 1
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Pascal's Triangle

Beyond the pyramidal symmetry, Pascal's triangle has a lot other cool features.

e Any value in the table is the sum of the two values diagonally above it.
e The sum of the kth row (counting the first row as zero row) can be calculated

as > (F) = 2*
=07
e If you left-justify the triangle, the sum of the diagonals form a Fibonacci
sequence.

e If arow is treated as consecutive digits, each row is a power of 11 (i.e. magic
115s).

There are many more mathematical properties in Pascal’s triangle. These are just
the cooler/more famous ones.




These Have a Purpose for Statistics

Let's start basic: how many times could we get heads in 10 coin flips?

e The sample space $S={0,1,2,3,4,56,7,8,9,10}
e We expect 10 heads (or no heads) to be unlikely, assuming the coin is fair.



Binomial Mass Function

This is a combination issue.

e For no heads, every flip must be a tail.
e For just one head, we have more combinations.

How many ways can a series of coin flips land on just one head?

e For a small number of trials, look at Pascal’s triangle.

e For 5 trials, there is 1 way to obtain 0 heads, 5 ways to obtain 1 head, 10 ways
to obtain 2 and 3 heads, 5 ways to obtain 4 heads, and 1 way to obtain 5
heads.




Binomial Mass Function

This is also answerable by reference to the binomial mass function, itself
derivative of the binomial theorem.

p(x) = <n>pm(1 -p)", )

where:

e x =the count of “successes” (e.g. number of heads in a sequence of coin flips)
e n =the number of trials.
e p = probability of success in any given trial.




Binomial Mass Function

What's the probability of getting five heads on ten fair coin flips.

p(z=5|n=10,p=.5) = (150> (.5)5(1 — .5)10-°

= (252) * (.03125) % (.03125)
= 0.2460938 (6)

InR:

dbinom (5,10,.5)

## [1] 0.2460938




An Application: The Decline of War?

THE BETTER ANGELS
OF OUR NATURE




The Decline of War?

Pinker (2011) argues the absence of world wars since WW2 shows a decline of
violence. But:

This kind of war is fantastically rare.

Gibler and Miller (Forthcoming) code 1,958 confrontations from 1816 to 2014.
Of those: 84 are wars (p =.042)

Of the wars, only 24 are wars we could think of as “really big” (p =.012)




The Decline of War?

The year is 2022. We haven't observed a World War Il in, basically, 75 years. What is
the probability of us not observing this where:

e p =.042, the overall base rate of war vs. not-war?
e p =.012, the overall base rate of a “really big war"?




tibble (num_wars = seq(0:7)-1,
base = dbinom(num_wars, 75, .042),
rbw = dbinom(num_wars, 75, .012))

tibble(num_wars = rep(c(0, 1, 2), 100)) %>%
arrange (num_wars) %>%
mutate(period = rep(seq(1:100), 3),
p = dbinom(num_wars, period, 0.012))



Probability of This Number of War in a 75-year Period

The Probability of the Number of (Observed) Wars in 75 Years, Given Assumed Rates of War

Knowing how rare ‘really big wars' are, it's highly probable (p = .404) that we haven't observed one 75 years after WW2.
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Probability of Observing This Many Wars Over 100 Years

The Probability of Observing a Set Amount of ‘Really Big Wars' Over a 100-Year Period

After 75 years, it's still more probable that we haven't observed a 'really big war' than having observed just one.
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Normal Functions

A “normal” function is also quite common.

e Data are distributed such that the majority cluster around some central
tendency.
e More extreme cases occur less frequently.



Normal Density Function

We can model this with a normal density function.

e Sometimes called a Gaussian distribution in honor of Carl Friedrich Gauss,
who discovered it.

1 (z — p)?
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where: = the mean, o2 = the variance.
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Normal Density Function

Properties of the normal density function.
e The tails are asymptote to 0.
e The kernel (inside the exponent) is a basic parabola.

e The negative component flips the parabola downward.

e Denoted as a function in lieu of a probability because it is a continuous
distribution.
e The distribution is perfectly symmetrical.

e The mode/median/mean are the same values.
e -xis asfarfrom i as x.




Normal Density Function

X is unrestricted. It can be any value you want in the distribution.

e /i and o2 are parameters that define the shape of the distribution.

e [ defines the central tendency.
e o2 defines how short/wide the distribution is.




Demystifying the Normal Density Function

Let's unpack this normal density function further (and use some R code).



Demystifying the Normal Density Function

Here is our normal density function.

1 (z — p)?

f(.’L'): \/We{_ 202

Assume, for simplicity, £ =0 and o%=1.




Demystifying the Normal Density Function

When p =0 and 0% =1, the normal density function is a bit simpler.

-} €)

Let's plot it nextin R.

gegplot(data.frame(x = c(-4, 4)), aes(x)) +
theme_steve_web() + # from stevemisc
stat_function(fun = dnorm, color="#522D80", size=1.5)




A Simple Normal Density Function

The mu parameter determines the central tendency and sigma-squared parameter determines the width.
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Demystifying the Normal Distribution

Let's look inside the exponent.

e The term inside the brackets (-:U2/2) is a parabola.
e Exponentiating it makes it asymptote to 0.




R Code

library(ggplot2)
parab <- function(x) {-x"2/2}
expparab <- function(x) {exp(-x~2/2)}

geplot(data.frame(x = c(-4, 4)), aes(x)) +
stat_function(fun = parab, color="#522d80", size=1.5) +
theme_steve_web()

gegplot(data.frame(x = c(-4, 4)), aes(x)) +
stat_function(fun = expparab, color="#522d80", size=1.5) +
theme_steve_web()




A Basic Parabola
Notice the height i at 0 because the negative part flipped the parabola downward.
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An Exponentiated Negative Parabola

Exponentiating squeezes the parabola, adjusts the height, and makes the tails asymptote to 0.
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Demystifying the Normal Distribution

When the numerator in the brackets is zero (i.e. x = p, here: 0), this devolves to an
exponent of 0.

e exp(0) =1 (and, inversely, log(1) = 0).
e Alogarithm of x for some base b is the value of the exponent that gets b to x.
o logp(x)=a == V==

e Notice how the top of the curve was at 1 in the exponentiated parabola.




Demystifying the Normal Density Function

. . . . 1
With that in mind, it should be clear that oot

determines the height of the distribution.

(recall: o2 =1linour simple case)




Demystifying the Normal Density Function

Observe:

1/sqrt (2*pi)

## [1] 0.3989423
dnorm(0,mean=0,sd=1)

## [1] 0.3989423

The height of the distribution for z = 0 when jz = 0 and 02 = 1 is .3989423.




Demystifying the Normal Distribution

Notice: we talked about the height and shape of the distribution as a function. It
does not communicate probabilities.

e The normal distribution is continuous. Thus, probability for any one value is
basically 0.

That said, the area under the curve is the full domain and equals 1.

e The probability of selecting a number between two points on the x-axis equals
the area under the curve between those two points.




Demystifying the Normal Density Function

Observe:

pnorm(0, mean=0, sd=1)

## [1] 0.5




Demystifying the Normal

ggplot (data.frame (x

theme_steve_web() +
stat_function(fun =
x1im
size=
geom

stat_function(fun

Distribution

c(-4, 4)), aes(x)) +

dnorm,
= c(-4,0),

0,

= "area", fill="#F66733", alpha=.5) +
= dnorm, color="#522D80", size=1.5)
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A Standard Normal Distribution

Notice that half the distribution lies between negative infinity and 0.
N
04-

x

-Infinity to 0 has 50% of the area under the curve
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68-90-95-99

pnorm(1,mean=0,sd=1)-pnorm(-1,mean=0,sd=1)

## [1] 0.6826895
pnorm(1.645,mean=0,sd=1)-pnorm(-1.645,mean=0,sd=1)
## [1] 0.9000302
pnorm(1.96,mean=0,sd=1)-pnorm(-1.96 ,mean=0,sd=1)
## [1] 0.9500042
pnorm(2.58,mean=0,sd=1)-pnorm(-2.58,mean=0,sd=1)

## [1] 0.99012




The Area Underneath a Normal Distribution

The tails extend to infinity and are asymptote to zero, but the full domain sums to 1. 95% of all possible values are within about 1.96 standard units from the mean.
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Conclusion

There are a lot of topics to digest in this lecture, all worth knowing.

e Probability and probability distributions are core components of the
inferential statistics we'll be doing next.
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