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Goal for Today

Discuss probability distributions.
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Introduction

Last lecture discussed probability and counting.

• While abstract, these are important foundation concepts for what we’re doing
in applied statistics.

Today, we’re going to talk about probability distributions.

• Our most prominent tool for statistical inference makes assumptions about
parameters given a known (i.e. normal) distribution.
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Refresher

Recall the choose notation (aka combination):(
n

k

)
= n!

(n − k)!k!
(1)

The exclamation marks indicate a factorial.

• e.g. 5! = 5 * 4 * 3 * 2 * 1.
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Binomial Theorem

The most common use of a choose notation is the binomial theorem.

• Given any real numbers X and Y and a nonnegative integer n,

(X + Y )n =
n∑

k=0

(
n

k

)
xkyn−k (2)

A special case occurs when X = 1 and Y = 1.

2n =
n∑

k=0

(
n

k

)
(3)
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Binomial Theorem

This is another theorem with an interesting history.

• Euclid knew of it in a simple form.
• The Chinese may have discovered it first (Chu Shi-Kié, 1303)
• General form presented here owes to Pascal in 1654.
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Binomial Theorem

The binomial expansion increases in polynomial terms at an interesting rate.

(X + Y )0 = 1
(X + Y )1 = X + Y

(X + Y )2 = X2 + 2XY + Y 2

(X + Y )3 = X3 + 3X2Y + 3XY 2 + Y 3

(X + Y )4 = X4 + 4X3Y + 6X2Y 2 + 4XY 3 + Y 4

(X + Y )5 = X5 + 5X4Y + 10X3Y 2 + 10X2Y 3 + 5XY 4 + Y 5 (4)

Notice the symmetry?
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Pascal’s Triangle

The coefficients form Pascal’s triangle, which summarizes the coefficients in a
binomial expansion.
n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

n = 5: 1 5 10 10 5 1
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Pascal’s Triangle

Beyond the pyramidal symmetry, Pascal’s triangle has a lot other cool features.

• Any value in the table is the sum of the two values diagonally above it.
• The sum of the kth row (counting the first row as zero row) can be calculated

as
k∑

j=0

(k
j

)
= 2k

• If you left-justify the triangle, the sum of the diagonals form a Fibonacci
sequence.

• If a row is treated as consecutive digits, each row is a power of 11 (i.e. magic
11s).

There are many more mathematical properties in Pascal’s triangle. These are just
the cooler/more famous ones.
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These Have a Purpose for Statistics

Let’s start basic: how many times could we get heads in 10 coin flips?

• The sample space S = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
• We expect 10 heads (or no heads) to be unlikely, assuming the coin is fair.
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Binomial Mass Function

This is a combination issue.

• For no heads, every flip must be a tail.
• For just one head, we have more combinations.

How many ways can a series of coin flips land on just one head?

• For a small number of trials, look at Pascal’s triangle.
• For 5 trials, there is 1 way to obtain 0 heads, 5 ways to obtain 1 head, 10 ways

to obtain 2 and 3 heads, 5 ways to obtain 4 heads, and 1 way to obtain 5
heads.
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Binomial Mass Function

This is also answerable by reference to the binomial mass function, itself
derivative of the binomial theorem.

p(x) =
(

n

x

)
px(1 − p)n−x, (5)

where:

• x = the count of “successes” (e.g. number of heads in a sequence of coin flips)
• n = the number of trials.
• p = probability of success in any given trial.
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Binomial Mass Function

What’s the probability of getting five heads on ten fair coin flips.

p(x = 5 | n = 10, p = .5) =
(

10
5

)
(.5)5(1 − .5)10−5

= (252) ∗ (.03125) ∗ (.03125)
= 0.2460938 (6)

In R:

dbinom (5,10,.5)

## [1] 0.2460938
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An Application: The Decline of War?
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The Decline of War?

Pinker (2011) argues the absence of world wars since WW2 shows a decline of
violence. But:

• This kind of war is fantastically rare.
• Gibler and Miller (Forthcoming) code 1,958 confrontations from 1816 to 2014.
• Of those: 84 are wars (p = .042)
• Of the wars, only 24 are wars we could think of as “really big” (p = .012)
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The Decline of War?

The year is 2022. We haven’t observed a World War II in, basically, 75 years. What is
the probability of us not observing this where:

• p = .042, the overall base rate of war vs. not-war?
• p = .012, the overall base rate of a “really big war”?
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tibble(num_wars = seq(0:7)-1,
base = dbinom(num_wars, 75, .042),
rbw = dbinom(num_wars, 75, .012))

tibble(num_wars = rep(c(0, 1, 2), 100)) %>%
arrange(num_wars) %>%
mutate(period = rep(seq(1:100), 3),

p = dbinom(num_wars, period, 0.012))
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Knowing how rare 'really big wars' are, it's highly probable (p = .404) that we haven't observed one 75 years after WW2.

The Probability of the Number of (Observed) Wars in 75 Years, Given Assumed Rates of War
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After 75 years, it's still more probable that we haven't observed a 'really big war' than having observed just one.

The Probability of Observing a Set Amount of 'Really Big Wars' Over a 100-Year Period
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Normal Functions

A “normal” function is also quite common.

• Data are distributed such that the majority cluster around some central
tendency.

• More extreme cases occur less frequently.
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Normal Density Function

We can model this with a normal density function.

• Sometimes called a Gaussian distribution in honor of Carl Friedrich Gauss,
who discovered it.

f(x) = 1√
2πσ2

e {−(x − µ)2

2σ2 }, (7)

where: µ = the mean, σ2 = the variance.
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Normal Density Function

Properties of the normal density function.

• The tails are asymptote to 0.
• The kernel (inside the exponent) is a basic parabola.

• The negative component flips the parabola downward.

• Denoted as a function in lieu of a probability because it is a continuous
distribution.

• The distribution is perfectly symmetrical.

• The mode/median/mean are the same values.
• -x is as far from µ as x.
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Normal Density Function

x is unrestricted. It can be any value you want in the distribution.

• µ and σ2 are parameters that define the shape of the distribution.

• µ defines the central tendency.
• σ2 defines how short/wide the distribution is.
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Demystifying the Normal Density Function

Let’s unpack this normal density function further (and use some R code).
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Demystifying the Normal Density Function

Here is our normal density function.

f(x) = 1√
2πσ2

e {−(x − µ)2

2σ2 } (8)

Assume, for simplicity, µ = 0 and σ2 = 1.
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Demystifying the Normal Density Function

When µ = 0 and σ2 = 1, the normal density function is a bit simpler.

f(x) = 1√
2π

e {−x2

2
} (9)

Let’s plot it next in R.

ggplot(data.frame(x = c(-4, 4)), aes(x)) +
theme_steve_web() + # from stevemisc
stat_function(fun = dnorm, color="#522D80", size=1.5)
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The mu parameter determines the central tendency and sigma-squared parameter determines the width.

A Simple Normal Density Function
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Demystifying the Normal Distribution

Let’s look inside the exponent.

• The term inside the brackets (-x2/2) is a parabola.
• Exponentiating it makes it asymptote to 0.
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R Code

library(ggplot2)
parab <- function(x) {-x^2/2}
expparab <- function(x) {exp(-x^2/2)}

ggplot(data.frame(x = c(-4, 4)), aes(x)) +
stat_function(fun = parab, color="#522d80", size=1.5) +
theme_steve_web()

ggplot(data.frame(x = c(-4, 4)), aes(x)) +
stat_function(fun = expparab, color="#522d80", size=1.5) +
theme_steve_web()
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Notice the height is at 0 because the negative part flipped the parabola downward.

A Basic Parabola
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Exponentiating squeezes the parabola, adjusts the height, and makes the tails asymptote to 0.

An Exponentiated Negative Parabola
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Demystifying the Normal Distribution

When the numerator in the brackets is zero (i.e. x = µ, here: 0), this devolves to an
exponent of 0.

• exp(0) = 1 (and, inversely, log(1) = 0).
• A logarithm of x for some base b is the value of the exponent that gets b to x.

• logb(x) = a =⇒ ba = x

• Notice how the top of the curve was at 1 in the exponentiated parabola.
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Demystifying the Normal Density Function

With that in mind, it should be clear that 1√
2πσ2 (recall: σ2 = 1 in our simple case)

determines the height of the distribution.
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Demystifying the Normal Density Function

Observe:

1/sqrt(2*pi)

## [1] 0.3989423

dnorm(0,mean=0,sd=1)

## [1] 0.3989423

The height of the distribution for x = 0 when µ = 0 and σ2 = 1 is .3989423.
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Demystifying the Normal Distribution

Notice: we talked about the height and shape of the distribution as a function. It
does not communicate probabilities.

• The normal distribution is continuous. Thus, probability for any one value is
basically 0.

That said, the area under the curve is the full domain and equals 1.

• The probability of selecting a number between two points on the x-axis equals
the area under the curve between those two points.
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Demystifying the Normal Density Function

Observe:

pnorm(0, mean=0, sd=1)

## [1] 0.5
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Demystifying the Normal Distribution

ggplot(data.frame(x = c(-4, 4)), aes(x)) +
theme_steve_web() +
stat_function(fun = dnorm,

xlim = c(-4,0),
size=0,
geom = "area", fill="#F66733", alpha=.5) +

stat_function(fun = dnorm, color="#522D80", size=1.5)

37/42



0.0

0.1

0.2

0.3

0.4

-4 -2 0 2 4

x

y
Notice that half the distribution lies between negative infinity and 0.

A Standard Normal Distribution

-Infinity to 0 has 50% of the area under the curve
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68-90-95-99

pnorm(1,mean=0,sd=1)-pnorm(-1,mean=0,sd=1)

## [1] 0.6826895

pnorm(1.645,mean=0,sd=1)-pnorm(-1.645,mean=0,sd=1)

## [1] 0.9000302

pnorm(1.96,mean=0,sd=1)-pnorm(-1.96,mean=0,sd=1)

## [1] 0.9500042

pnorm(2.58,mean=0,sd=1)-pnorm(-2.58,mean=0,sd=1)

## [1] 0.99012
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The tails extend to infinity and are asymptote to zero, but the full domain sums to 1. 95% of all possible values are within about 1.96 standard units from the mean.

The Area Underneath a Normal Distribution
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Conclusion

There are a lot of topics to digest in this lecture, all worth knowing.

• Probability and probability distributions are core components of the
inferential statistics we’ll be doing next.
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